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Abstract. The conventional climate datasets based on observations only are a widely used source

of information for climate and hydrology. On the Norwegian mainland, the seNorge datasets of

daily mean temperature and total precipitation amount constitute a valuable meteorological input for

snow- and hydrological simulations which are routinely conducted over such a complex and het-

erogeneous terrain. A new seNorge version (seNorge2) has been released recently and to support5

operational applications for civil protection purposes, it must be updated daily and presented on a

high-resolution grid (1 Km of grid spacing). The archive goes back to 1957. The seNorge2 statis-

tical interpolation schemes can provide high-resolution fields for applications requiring long-term

datasets at regional or national level, where the challenge is to simulate small-scale processes often

taking place in complex terrain. The statistical schemes build upon classical spatial interpolation10

methods, such as Optimal Interpolation and successive-correction schemes, and introduce original

approaches. For both temperature and precipitation, the spatial interpolation exploits the concept of

(spatial) scale-separation and the first-guess field is derived from the observed data. Furthermore, the

geographical coordinates and the elevation are used as complementary information. The evaluation

of the seNorge2 products is presented both from a general point of view, through systematic cross-15

validations, and specifically as the meteorological input in the operational model chains used for

snow- and hydrological simulations. The seNorge snow model is used for simulation of snow fields

and the DDD (Distance Distribution Dynamics) rainfall-runoff model is the hydrological model

used. The evaluation points out important information for the future seNorge2 developments: the

daily mean temperature fields constitute an accurate and precise dataset, on average the predicted20

temperature has un unbiased estimate of the actual temperature and its precision (at grid points)

varies between 0.8◦C and 2.4◦C; the daily precipitation fields provide a reasonable estimate of the
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actual precipitation, the cross-validation shows that on average the precision of the estimates (at grid

points) is about ±20%, though a systematic underestimation of precipitation occurs in data-sparse

areas and for intense precipitation. Both the seNorge snow and the DDD models have been able25

to make profitable use of seNorge2, partly because of the automatic calibration procedure they in-

corporate for precipitation. The dataset described in this article is available for public download at

http://doi.org/10.5281/zenodo.845733.

1 Introduction

The successful modeling of hydrological processes requires reliable meteorological forcing data,30

which is a crucial but often undervalued element of the model chain (e.g., Magnusson et al., 2015).

In Norway, the management of water and energy resources as well as forecasting of natural hazards

relies largely on the results from hydrological modeling. The main operational hydrological models

at the Norwegian Water Resources and Energy Directorate (NVE) use conventional (or observa-

tional) climatological daily gridded datasets of temperature and precipitation on a high-resolution35

grid as their input data.

Conventional climatological datasets are based on observed data only and they are used in sev-

eral applications (Simmons et al., 2016). The Norwegian Meteorological Institute (MET) produces

the seNorge collection of conventional gridded climate datasets, which are based on observations

from climate and weather stations and archived in the Norwegian Climate Database. The seNorge40

data is used in the national forecasting system for floods, avalanches and landslides as well as for

hydropower production planning. Consequently, the observation-based gridded dataset is of vital im-

portance for both MET and NVE, and for several hydropower companies. They are also utilized for

many other tasks, such as snow and permafrost mapping (Gisnås et al., 2017), research and climate-

related analyses (Engen-Skaugen et al., 2007). Therefore, it is required to keep a high standard and45

quality of these data.

The seNorge version 1.0 was released in 1997 (Førland and Tveito, 1997) with focus on daily

mean air temperature and accumulated precipitation for applications within fields such as climatol-

ogy and hydrology. A detailed description of the method developed for the first seNorge release can

be found in Tveito and Førland (1999); Tveito et al. (2000, 2002). Already the first applications50

required high-resolution meteorological fields in order properly represent the highly variable mete-

orological and topographical conditions of Norway, as well as a period covering several decades.

Thus, the grid spacing was chosen to 1Km in both meridional and zonal directions. The seNorge

datasets covers the period from 1957 until today since it is continuously updated to serve daily op-

erations both at NVE and MET.55

In 2009, a seNorge version 1.1 (or simply seNorge1.1) was released and descriptions can be found

in Mohr (2008, 2009). For this version, the spatial interpolation of temperature is based on a resid-
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ual kriging method, where the external trend parameterization is based on climatology. The daily

precipitation is interpolated by a method based on triangulation, the input data is adjusted for the

gauge undercatch due to wind and a systematic elevation dependence for precipitation is introduced.60

The seNorge1.1 dataset has been indirectly evaluated by applying snow models based on this data

(Dyrrdal, 2010; Saloranta, 2012). In Saloranta (2012), a significant overestimation trend of the snow

amounts with elevation was found by comparing model results with the observations of snow wa-

ter equivalent (SWE) obtained from the hydropower companies. On the basis of this evaluation, a

revised snow model (v.1.1.1) was introduced and a three-parameter elevation-dependent precipita-65

tion correction algorithm was optimized against the SWE observations (Saloranta, 2014b, a). The

calibrated precipitation correction algorithm reduced the gridded input precipitation by up to 38%

in the model simulations. The need for such a correction suggested that the vertical precipitation

gradients (5-10% increase by 100m elevation) as well as correction factors (up to +80%) for precip-

itation measurement-gauge catch loss for solid precipitation could be too high. Moreover, the snow70

model data-assimilation study by Saloranta (2016) indicated too weak wintertime vertical temper-

ature lapse rates in the seNorge1.1 dataset. Consequently, work was initiated to revise the spatial

interpolation method and to establish an improved seNorge version 2.0 (or simply seNorge2) dataset

for temperature and precipitation, which includes not only daily but also hourly aggregated variables.

seNorge2 is an ongoing project and it has a modular structure, which at its final stage would75

include: a) retrieval of temperature and precipitation observations from the Norwegian Climate

Database; b) automatic data quality control; c) adjustment of solid precipitation for the wind un-

dercatch; d) spatial interpolation based on statistical methods; e) post-processing of the predicted

precipitation fields to adjust for bias; f) archiving and dissemination of temperature and precipitation

gridded fields. In the current stage of development, not all the modules are activated. In particular,80

the solid precipitation is not adjusted for the wind undercatch and no post-processing (or calibration)

of the final predictions is performed. In addition, the automatic data quality control setup is rather

tolerant towards large deviations from the expected values. An advantage of the current seNorge2

setup is that a minimum number of parameters needs to be optimized. The scheme is robust, rea-

sonably easy to test and makes use of all the available observations. The statistical interpolation85

scheme is based on Optimal Interpolation (OI: Gandin and Hardin, 1965) and it is flexible enough

to incorporate additional information, such as geographical data.

In this study, we aim at evaluating the seNorge2 conventional datasets of daily temperature and

precipitation, especially for snow- and hydrological modeling. In the future, we will increase the

seNorge2 complexity and according to the outcomes of our evaluations we will prioritize our ac-90

tions on the different modules. For the evaluation we rely on multi-year (around 60 years) gridded

datasets to provide robust results. The quality assessment of the seNorge2 data is based on the sum-

mary statistics collected by leave-one-out cross-validation (CV) experiments. The indirect evalua-

tion of seNorge2 has been carried out using NVEs operational snow- and hydrological models. In
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addition, we also assess the the consistency between the precipitation datasets and measured water95

balance components (catchment runoff and actual evapotranspiration). Finally, the results obtained

with seNorge2 as forcing data have been compared with those obtained with seNorge1.1.

The outline of the paper is as follows. In section 2 the seNorge2 statistical interpolation methods

are described, with the strongest emphasis on the procedures used for interpolating daily precipita-

tion. Then, in section 3 seNorge2 is evaluated using both direct and indirect methods. Furthermore, in100

the same section the seNorge snow model and the DDD (Distance Distribution Dynamics) rainfall-

runoff model are briefly presented.

2 Description of seNorge2

seNorge2 is a conventional climate dataset for daily temperature and precipitation that is updated

daily and covers the period from 1957 onwards. The daily average temperature is defined as the105

arithmetic mean of 24 hourly values in the period 06-06 UTC. When hourly temperatures are not

available, the daily mean temperature is calculated as a weighted mean of temperatures at 06, 12,

18 and 00 UTC (eventually the maximum and the minimum daily temperature) (Førland and Tveito,

1997). The daily total precipitation is defined as the accumulated precipitation in the time period

06-06 UTC.110

The seNorge2 dataset is based on in situ observations from the Norwegian Climate Database. We

also include data from the European Climate Assessment Dataset (ECA&D: Klein Tank et al., 2002)

for regions neighboring Norway. Original non-homogenized time series have been used, to have a

larger dataset than the one provided by the homogenized time series. The number of stations used

for the interpolation varies with time due to data availability and the station distribution is uneven115

throughout the spatial domain. In Figure 1 the spatial distribution of all the stations in the region

of interest for the period 1971-2010 is shown, together with the percentage of availability of their

observations. On average, in the period 1980-2015 the number of observations used for the daily

mean temperature is 480, while for the total precipitation is 920. However, the number of available

observations is not stationary in time: for temperature there are more observations in recent years120

(the average in the period 2014-2015 is 660) while the situation is the opposite for precipitation (for

the 80s around 1000 observations are available while the average is 820 for the period 2014-2015).

The statistical interpolation of temperature and precipitation are both based on modified OI schemes.

OI has been developed as an objective analysis scheme for meteorological fields (Eliassen, 1954;

Gandin and Hardin, 1965), then it has been widely used in data assimilation to provide initial condi-125

tions for numerical models (Kalnay, 2003; Daley, 1991; Lorenc, 1986). The use of a background or

first-guess field is a central component of OI. The concept of first-guess field has been introduced in

the context of objective analysis during the 1950s (Bergthörsson and Döös, 1955; Thompson, 1961)

and it coincides with the prior information used in Bayesian statistical schemes. In our work, OI has

4

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-64

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 28 August 2017
c© Author(s) 2017. CC BY 4.0 License.



been used as a spatial interpolation technique and the background field has been estimated from the130

in situ observations instead of being an observation-independent information derived from numerical

atmospheric models or climatology, as for the ”classical” OI. For temperature, spatial interpolation

schemes similar to the one implemented for seNorge2 can be found in Uboldi et al. (2008); Horel

and Dong (2010) and in Frei (2014), though this last work is based on residual kriging instead of OI.

For precipitation, Bayesian spatial interpolation schemes have been also applied in the past (Todini,135

2001; Schiemann et al., 2010; Lussana et al., 2009; Aalto et al., 2016). However, the absence of an

independent background motivated us to adopt an approach inspired by the successive-correction

methods (Barnes, 1964) in the form proposed by Bratseth (1986). The spatial interpolation scheme

developed for seNorge2 is based on an iteration of a statistical interpolation scheme over a decreas-

ing sequence of spatial scales. This idea has been widely used for mesoscale meteorological analysis140

in successive-correction methods, see Uboldi and Buzzi (1994) and references therein. However, we

have adapted this method to the special statistical properties of precipitation fields and its implemen-

tation can be regarded as an original contribution to this research field.

For both variables the spatial interpolation relies on the concept of scale-separation and the under-

lying idea is that the final predicted values are a combination of large scale and local scale effects. In145

our application, the term large scale refers to spatial scales that are significantly wider than the local

station density, while the term local scale (or small scale) refers to spatial scales that are comparable

to the local station density. The effects of atmospheric processes on scales that are smaller than the

local station density are not properly resolved by the spatial interpolation schemes and they consti-

tute the so-called representativeness error (Lussana et al., 2010), which is part of the observation150

error in OI. For example, small-scale processes are the result of very local responses to mesoscale

dynamics that may affect just one or very few observations, thus determining large uncertainties

in the final prediction. Because of the actual station distribution, it is expected that seNorge2 would

properly resolve atmospheric processes from the synoptic down to the meso-β scale (Orlanski, 1975;

Thunis and Bornstein, 1996), which has a lower bound of 20Km.155

The operational choices we have made were: (1) to use all available observations and (2) to keep

the statistical interpolation settings fixed in time. As a result, any significant variation in time of

the seNorge2 summary statistics should be attributed to an actual modification in the underlying

climatology. However, as pointed out in Masson and Frei (2016), the variations in the station network

impact on the estimation of long-term trends from conventional datasets. Further investigations are160

needed to accurately assess this impact on seNorge2.

In the following, the seNorge2 interpolation schemes are described in detail. Section 2.1 intro-

duces briefly OI, highlighting the points which are useful for our purposes. Then, sections 2.2 and

2.3 describes the statistical interpolation schemes for temperature and precipitation, respectively. In

particular, the spatial interpolation of precipitation is described in detail because of its originality.165
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2.1 Optimal Interpolation

The OI aims at providing the best (i.e. minimum error variance for the analysis), linear, unbiased

estimate of the unknown meteorological field by combining a prior information (i.e. background)

on the grid with in situ observations. In the following, we use the same notation as Lussana et al.

(2010) (based on Ide et al. (1997)): the vector y indicates the m observations of either air temper-170

ature or precipitation, and the vector x represents the n grid cells. Superscripts o, b and a denote

observation, background and analysis, respectively; while the superscript t indicates the unknown

true value. Matrices are in bold roman type (capital letters). Scalar variables are in italic type, so the

i-th component of a vector x is xi, while for a generic matrix W, components are indicated as Wij .

OI relies on the assumptions of Gaussian distribution for both the observation error εo ≡ yo−yt175

and the background error εb ≡ yb−yt (or ηb ≡ xb−xt for grid points). As a consequence, their

distributions are completely defined by their mean values and covariance matrices only. Both the

observations and the background are assumed to be unbiased estimates of the true value and their

error covariance matrices are specified by means of analytical functions, such that: εo ∼N (0,R),

εb ∼N (0,S) and ηb ∼N (0,B). Furthermore, observations and background are regarded as un-180

correlated variables.

The analysis is also a random variable with a Gaussian distribution (Jazwinski, 2007) and its mean

values on the grid and at station locations can be written as:

xa = xb + K
(
yo−yb

)
(1)

ya = yb + W
(
yo−yb

)
(2)185

where the two matrices of interpolation weights are: K, the gain matrix; W, the influence matrix.

The equations for the weight matrices K and W depend on our choices on the error covariance

matrices. The observation error covariance matrix R is assumed to be diagonal and all the obser-

vations are assumed to have the same error variance σ2
o , then: R≡ σ2

oI (I is the identity matrix).

The background error covariance matrices requires the specification of the correlation between two190

generic points ri = (xi,yi,zi) and rj = (xj ,yj ,zj), which for us is the correlation function ρ:

ρ(ri,rj) = exp

{
−1

2

[(
d(ri,rj)
Dh

)2

+
(

∆z (ri,rj)
Dz

)2
]}

(3)

Where: d(ri,rj) is the horizontal distance between the two points ;∆z (ri,rj) is the difference be-

tween their elevations;Dh andDz are the horizontal and vertical de-correlation lengths, respectively.

The generic component Sij of the background error covariance matrix at station locations (a similar195

expression holds for B too) is Sij ≡ σ2
bρ(ri,rj), where: ri and rj indicate the locations of the i-th

and j-th stations, and the background error variance σ2
b is assumed to be the same for all the points.

The components of the background error correlation matrix at station locations S̃ can be written as

S̃ij ≡ ρ(ri,rj); while the background error correlation matrix between grid points and station loca-
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tions is the nxm matrix with components G̃ij ≡ ρ(ri,rj), where ri indicates the spatial location of200

the i-th grid point and rj is the j-th station location.

Given our assumptions on the error covariance matrices, the expressions for the weight matrices

are derived directly from the theory of linear Kalman Filters (Uboldi et al., 2008):

K = G̃
(
S̃ + ε2I

)−1

(4)

W = S̃
(
S̃ + ε2I

)−1

(5)205

where ε2 is the ratio σ2
o/σ

2
b.

Two elements of the OI diagnostics are introduced in this paragraph, because they have been used

in our work both for optimization of parameters and evaluation of results (sections 2.3-3). First, the

Integrated Data Influence (IDI: Uboldi et al., 2008; Lussana et al., 2016) is the sensitivity of the

analysis in a generic point on the domain to variations in the observations, independently from the210

actual observed values. In practice, the IDI field is the result of an OI scheme where the observations

are set to 1 and the background is set to 0, such that regions where the observations effectively

introduces information have IDI values close to 1. On the other hand, for data-void regions the IDI

values are close to 0.

Second, the leave-one-out cross-validation (CV) analysis y̌a: each component of the m-vector y̌a215

is the analysis value obtained for the corresponding station location by using all the other observa-

tions, but without using the observation measured at that station location. The equation for y̌a can

be written as (Uboldi et al., 2008; Lussana et al., 2010):

y̌a = yo + wT (ya−yo) (6)

where the vector w has components wi = (1−Wii)
−1. The deviation between the CV-analysis and220

its corresponding observation represents an estimate of the analysis error based on the idea that each

observation is used as an independent verification of the analysis field. Because not all the available

information is used, the error estimate can be regarded as a conservative one.

2.2 Spatial Interpolation of the daily mean temperature

The seNorge2 interpolation procedure used for temperature implements a two-steps scale-separation225

approach based on on a modification of the classical OI (section 2.1). A description of the method

can be found in Lussana et al. (2017).

In the first step, a background field for the OI is estimated by means of spatial de-trending of the

observed values. At each grid point, the background is meant to represent the temperature estimated

not only from the few closest observations but also by considering a larger neighbourhood around230

the grid point. The size of this neighbourhood depends on the local station density and we refer

to the background field as the large scale temperature field. The large scale field for the entire do-

main is obtained by blending several regional estimates of the large scale temperature, each of them
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centered on a different geographical area. It is at the regional level that the spatial de-trending of

observations is performed by using non-linear parametric functions of the geographical coordinates235

and elevation, which allow for temperature inversions in the thermal profile. Because the large scale

field is computed at every time step, temporal variations of horizontal gradients or vertical profiles

of temperature are automatically taken into account.

In the second step, the OI adjusts the background field locally, as in Eqs. (1)- (2), to add the effects

of small scale processes (Uboldi et al., 2008). The procedure used to configure the OI is based on a240

trade-off between the necessity to adjust for the inclusion of small-scale processes for as many grid

points as possible, and the need to keep a substantial distinction between large and local scale effects.

The de-correlation length scales Dh and Dz , which are used in Eq. (3) to compute the background

error covariance matrices, are set to: 60Km and 600m, respectively. As a general rule, Dh should

be comparable to the average distance between one station and its closest three-four stations. The245

error variances are assumed constant over the spatial domain and we have set the observation error

variance to half of the background error variance, such that ε2 = 0.5.

To deal with the presence of gross measurement errors in the temperature observations, a spatial

consistency test is included in the statistical interpolation, as described in Lussana et al. (2010).

2.3 Spatial Interpolation of the daily accumulated precipitation250

The precipitation analysis is regarded as a composition of several (precipitation) events, which are

considered individually, and the statistical properties of the field are allowed to change between

events.

For each event, the statistical interpolation scheme has been implemented by means of an iterative

algorithm on a cascade of spatial scales, from the synoptic scale down to the small-scale. As stated255

in Uboldi et al. (2008), given the filtering properties of OI, the choice of the scale parameters Dh

and Dz in the correlation function ρ (Eq. (3)) determines a minimum distance scale (wavelength)

resolved by the analysis. Besides, the spatial resolution observational network dictates a minimum

for that choice and features so small that cannot be resolved by the observational network cannot be

appropriately represented by the resulting analysis field. The iterative algorithm presented exploits260

the OI filtering properties. Starting from a first-guess of the average precipitation value (i.e. largest

scale), several successive iterations of OI-derived corrections (over a decreasing sequence of values

for Dh) are being applied to the predicted precipitation field.

In analogy with the scale-separation concept used for temperature in section 2.2, which is based on

two scales, the idea adopted for precipitation might be regarded as a multi-scale separation approach.265

The statistical interpolation scheme described in the following has been applied on Fennoscandia,

with a focus on Norway. However, because of the online estimation of several parameters, it can be

adapted and used for spatial interpolation in other geographical areas.
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In the remaining of this section, the two main steps of the statistical interpolation scheme are

described: the identification of individual precipitation events in section 2.3.1 and the multi-scale270

statistical interpolation scheme is section 2.3.2.

2.3.1 Identification of events

An individual event on the grid is a connected zone of grid points where the precipitation exceeds

the predefined threshold of 0.1mm/day. Each event is considered as being independent from the

others and the precipitation field is regarded as the union of several precipitation events spaced out275

between each other.

Initially, a first guess for the distribution of events both on the grid and for station locations is

obtained. The observations measuring precipitation (i.e. wet observations) are tentatively grouped

in events by using a triangulation-based procedure: two wet observations are assigned to the same

event if a direct connection between them exists (i.e. they lie on the vertices of the same triangle) or if280

they are connected through only one observation not measuring precipitation (i.e. vertices of adjacent

triangles). In this latter case, the observation not measuring precipitation (i.e. dry observation) is also

included in the first guess of that event. Then, an interpolation procedure based on nearest neighbor

is used to group grid points into events. The precipitation is set to 0mm for all the grid points outside

the event areas.285

In the second step, each event is considered individually aiming at determining those grid points

where precipitation is most likely to occur. The question is to decide whether the analysis at a grid

point is more influenced by the surrounding wet observations or by the dry ones. As described in

section 2.1, the influence on the analysis of a set of observations can be quantified through the IDI

value. Suppose that the i-th grid point has been assigned in our first guess to a specific event, then290

precipitation is most likely to occur there if the IDI of the wet observations (xIDIw) included in the

event under consideration is greater or equal to a fraction of the IDI of the dry observations (xIDId):

xIDIw
i ≥ 0.6 ·xIDId

i → precipitation occurs at the i-th grid point (7)

We require that the influence of the dry observations xIDId
i must be considerably larger than xIDIw

i

for a grid point to be considered ”dry”. This can be regarded as a conservative choice, in case of295

uncertainty (i.e. when xIDId
i and xIDIw

i are not too different) we prefer to estimate a precipitation

value for the i-th grid point instead of taking the more drastic decision of setting it to zero. The factor

0.6 in Eq. (7) has been set as in (Lussana et al., 2009), because it improves the agreement between

the model results and the observations. As described in section 2.1, the IDI values are obtained as

the analysis values (Eq. (2)) with the background set to 0 and the observed values set to 1. In this300

case, the OI parameters used in the IDI elaboration can vary from grid point to grid point: Dh is

the horizontal distance to the closest available station location (irrespective of the observed value);

Dz is the maximum elevation within the event first-guess (a minimum value of 500m is pre-set);

9
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ε2 ≡ σ2
o/σ

2
b = 0.1, which means that we impose the IDI field to fit the value 1 in the surroundings

of observation locations.305

Finally, adjacent (connected) grid points where the precipitation is most likely to occur are as-

signed to the same event and the event gets a unique label. The wet observations are assigned to the

same event of the surrounding grid points. In the special case of a wet observation surrounded by dry

grid points only, a new event is created. The isolated wet observation is associated to this new event,

together with the closest grid points. This special situation may occur in dense station areas (i.e.310

station density comparable to the grid resolution) when, for example, only one station is measuring

precipitation.

2.3.2 Iterative Optimal Interpolation

As stated in section 2.3, the iterative algorithm operates on a cascade of spatial scales, which is de-

fined through a decreasing sequence ofK values forDh = {large scale, . . . , local scale}. The largest315

scaleDh
1 is set to the semi-major axis of the ellipsoid of minimal area enclosing all grid points of the

event under consideration (i.e. its ellipsoid hull), then Dh
k+1 =Dh

k − 10Km (k = 1, . . . ,K) and the

local scale Dh
K is set to the minimum distance between two stations (the minimum allowed value is

10Km).

The regional topography influences the precipitation patterns, consequently points at the same320

elevation tend to be more correlated than points at different elevations. Because of that, we have

decided to include elevation differences in our (de)correlation functions ρ (Eq. (3)). The sequence

of K vertical scales Dz
k is not predefined, such as for Dh. On the contrary, they are optimized

every time step and for each Dh
k value. The optimal Dz

k is chosen among four possible values

Dz = {5000m,2000m,1000m,500m}. A value of Dz = 5000m means that the de-correlation of325

precipitation along the vertical is actually not needed, then the de-correlation gradually increases

with decreasingDz . By decreasing the correlation ρ between points, we are also reducing the spatial

extent of the area of influence that every observation has on the analysis. Because our method is

based only on observations, a predefined lower limit of 500m has been set for Dz , otherwise the

total extension of data-sparse areas may become too large.330

The application of the OI iterative scheme requires the definition of two further elements: 1) a spa-

tial averaging operator 〈. . .〉h,v to process the vector observed values. The operator is applied to its

components to obtain for each station location a ”processed observation” meant to represent the av-

erage precipitation in a neighbourhood of a predefined size around that location. The neighbourhood

considered is a cylinder of radius h and height v, having its center of mass at the station location; 2)335

ε2 (Eqs. (4)- (5)), the ratio between the observation and background error covariances ε2 specifies

the weight of the new information (i.e. the processed observations) compared to the background. At

each iteration, the background is the result of previous iteration steps and it represents the integrated
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effect of the larger spatial scales. ε2 is set to 0.1, as in the IDI calculation of section 2.3.1, and its

value is kept constant in the elaboration.340

The iterative OI algorithm is based on two nested loops.

– the outer loop over the Dh = {large scale, . . . , local scale} scales (index k = 1, . . . ,K). For

the k-iteration, the background is the analysis obtained at iteration k− 1: xb
k = xa

k−1 and

yb
k = ya

k−1. As initial conditions, the vectors xb
1 and yb

1 are set to the mode of the distribution

of observed precipitation values.345

– the inner loop over Dz = {5000m,2000m,1000m,500m} (index c= 1, . . . ,4). The ob-

servation vector used is the processed observation yo
k,c ≡ 〈yo〉Dh

k ,Dz
c
. First, the cross-

validation analysis y̌a
k,c is computed as in Eq. (6), where the influence matrix W is

computed using the pair
(
Dh

k ,D
z
c

)
in Eq. (3) to define the correlation function. Then,

the optimal value for Dz (D̃z) is chosen as the one that minimizes the relative error350

between y̌a
k,c and yo

k,c (i.e. relative error = prediction / observation). However, we are

not using the actual (CV-) predicted and (processed) observed values in the definition of

relative error. In fact, the ”started logs” (st.log) (Erdin, 2009; Rocke and Durbin, 2003)

of those values have been used, so ”to ensure an equal scaling of positive and negative

deviations of prediction from observations and because the relative error is highly sensi-355

tive to small observations that might be under or overestimated by a large factor in the

prediction” (Erdin, 2009). The relative error is written as:

relsk,c =

√√√√ 1
m
·

m∑

j=1

[
st.log

(
y̌a

j,k,c

)
− st.log

(
yo

j,k,c

)]2
(8)

where . . .j,k,c indicates the j-th vector component for iteration (k,c) and the started logs

are defined as:360

st.log(x) =





log10 (x) if x > lc,

log10 (lc) + (x− lc)/ [lc · ln(10)] if x≤ lc
(9)

the critical threshold has been set to lc ≡ 1.5mm.

– out of the inner loop and back to the outer loop. the analyses xa
k (Eq. (1)) and ya

k (Eq. (2))

are obtained, the weight matrices K and W (Eqs. (4)- (5)) used in the analysis procedure are

computed with the correlation function ρ (Eq. (3)) defined by the two parameters Dh and D̃z .365

The final analyses are xa = xa
K and ya = ya

K .

3 Evaluation of seNorge2

The seNorge2 dataset has been evaluated by assessing both the quality of the gridded fields and the

quality of the snow- and hydrological model results. The time period considered in our evaluation
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ranges from 2000 to 2015, though each of the following sections consider a slightly different time370

interval within this period.

The seNorge2 daily products are directly evaluated by analyzing the summary statics collected

through cross-validation. The object of this direct evaluation is to assess the quality of seNorge2

fields for general purposes, without addressing any particular application. In the case of daily aver-

aged temperature, the evaluation is described in Lussana et al. (2016, 2017) where it has been shown375

that: on average the final analysis fields are an unbiased estimate of the actual two-meter tempera-

ture; the precision at grid points of our estimates varies between 0.8◦C and 2.4◦C. For extremely

low temperatures, e.g. below −30◦C, a warm bias of around 1◦C is present.

The evaluation of daily precipitation is presented in this paper. The direct evaluation of model

output is reported in section 3.1. Besides, in section 3.2 the gridded precipitation dataset is also380

evaluated by assessing its consistency with the long-term water balance over a large number of

Norwegian catchments. The last two sub-sections deal with the indirect evaluation of seNorge2. The

dataset has been used as the input forcing for the seNorge snow model (section 3.3) and for the

DDD hydrological model (section 3.4) and their results have been evaluated. The snow simulation

results have been validated by using satellite observations of snow covered area, while the DDD385

hydrological model results have been compared with the measured stream flow.

3.1 Evaluation of daily precipitation fields

The time period considered in our evaluation covers 11 years, from 1 September 2003 to 31 August

2014. All the Norwegian stations shown in Figure 1 have been used in our evaluation.

Precipitation events characterized by length scales of comparable size with the local station den-390

sity, which can reach several tenths of kilometers in sparse station areas (Figure 1), might be detected

by just one station or not detected at all. In the case of isolated wet observations, the uncertainty in the

predicted precipitation is expected to be quite large and it is not quantifiable through cross-validation.

The statistics of occurrence for such cases is an indicator of the adequacy of the station network in

detecting precipitation events and it may be interpreted as a lower limit for the atmospheric scales395

resolved by our network. The number of events observed by one station only is 44.520 (4% of all

wet observations) and the median of their area distribution is 225Km2, which correspond to a semi-

major axis of the ellipsoid hull (section 2.3.2) equal to 13Km (first quartile is 10Km, third quartile is

22Km). With reference to the hierarchy of atmospheric motions proposed by Thunis and Bornstein

(1996), such length scales correspond to the lower boundary of the mesoscale (meso-γ) and they are400

consistent with the representation of: thunderstorms, thunderstorm groups and fronts.

In Figure 3, the distribution of relative error values for daily precipitation as a function of the

precipitation intensity is shown. Note that the relative error we are using for evaluation is different

from the one defined in section 2.3.2 for spatial interpolation purposes, though both make use of

the cross-validation analysis (Eq. (6)). Consider the j-th station location, then the relative error is405
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defined as:

rel =
y̌a

j

yo
j

(10)

Note that the relative error considered evaluates the analysis quality at grid points, even if both the

CV-analysis and the observed values are quantities located at station points. In fact, by definition y̌a
j

is independent from yo
j (this is not the case for ya

j , of course), then y̌a
j can be seen as the analysis at410

a grid point, which normally does not coincides with any of the station locations. The set of relative

error values displayed in Figure 3 is obtained by considering all the station locations for every time

step in the interval. The labels of the intensity classes reported on the abscissa in Figure 3 correspond

to the following distribution quantiles: 25%, 50%, 75%, 95%, 99%.

The predicted values at grid points underestimate the actual precipitation, especially in the case415

of intense precipitation. The increase in magnitude of the deviation of the relative error from the

ideal value of 1 with the increase of precipitation intensity is not surprising and it is related to the

multiplicative error model which is in general valid for precipitation (Tian et al., 2013). For the most

intense class of precipitation considered (i.e. observed values greater or equal to the 99% distribution

quantile) the median of the distribution for the relative error is around 0.8, which corresponds to the420

distribution of CV-residuals (i.e. observation minus CV-analysis, not shown here) centered around

10mm and with an interquartile range between 2mm and 18mm. In general, the median of the

different distributions is between .9 and 1 for the precipitation intensity classes up to 8mm and

the uncertainty (e.g. the interquartile range) is bounded between ±20% and ±30% of the observed

value, which is a result comparable to the ones reported in previous studies (Isotta et al., 2014).425

It is useful to consider the evaluation of each event separately to have an idea of the seNorge2

performances over regions and not only for a fixed set of points in space. For our event-based eval-

uation, we have extended the previous definition of relative error. Consider the event e, its relative

error relex for observations greater or equal to x is:

relex = mean
(
y̌a

j /y
o
j

)
,yo

j is assigned to event e and yo
j ≥ x (11)430

The threshold x has been introduced to filter out the effect of weak precipitation, which might have

a huge impact on the relative error (see the class "All" in Figure 3) but a minor effect on the overall

water balance. The value of relex is then assigned to all the grid points within the ellipsoid hull

associated with e.

In Figure 4, the mean value of rele1mm over Norway is shown. The rele1mm field shows a character-435

istics banding pattern, which is related to the typical trajectories followed by precipitation events in

Norway: they frequently originate from low-pressure system over the Atlantic Ocean, moving their

way eastward towards the Norwegian mainland. The distribution of rele1mm is not uniform across

the domain, the most significant underestimation of precipitation (i.e. rele1mm between 0.9 and 0.95)

occurs in the North and in a narrow strip of land in the South, while on average an overestimation of440
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precipitation around 10% and 15% occurs in a region along the West coast in the South stretching

towards the middle part of Norway. Our event-based evaluation has also shown that the deviation of

the relative error from the ideal value of 1 increases with the event average intensity, as for the point

based evaluation above.

3.2 Evaluating the precipitation grids using hydrological measurements445

In this section, we evaluate the seNorge1.1 and seNorge2 precipitation datasets using stream flow

measurements from 151 stations in Norway. These runoff measurements capture the outflow from

catchments without artificial influence (e.g. hydropower) and glaciers. For the evaluation presented

below we consider the period from 1 January 2000 to 31 December 2013. The map of the catchment

sizes is shown in Figure 5, where each dot indicates the location of the catchment centroid and450

the colors display the size. Note that many of the smaller catchments are located in the wet and

mountainous regions, thus showing higher runoff values than the larger catchments, which usually

are located in flatter areas further inland with a comparably dry climate. For further details about the

particular characteristics of the Norwegian catchments, see Vormoor et al. (2016).

Figure 6 shows the annual average catchment water balance as the losses of water (sum of runoff455

and actual evapotranspiration) against the inputs of water (precipitation). The actual evapotranspira-

tion estimates were obtained from the MODIS Global Evapotranspiration Project (Mu et al., 2011).

The regression lines are obtained through the application of a robust and resistant procedure as de-

scribed in Lanzante (1996). seNorge1.1 shows higher annual total precipitation than the water losses

for most catchments (coefficient of regression 1.08), while seNorge2 underestimates the input term460

in the water balance (coefficient of regression 0.63). The linear regressions between precipitation

and the sum of runoff and evapotranspiration show an higher coefficient of determination (r2) for

seNorge1.1 than seNorge2. On the other hand, the seNorge2 points tend to lie closer to the regression

line, as shown in the box on the upper left of Figure 6 where the regression residuals are reported for

both versions. The sum of squares of residuals (i.e. residual = precipitation - predicted value by the465

linear regression) for seNorge1.1 is twice as large as the one for seNorge2: 12958521.8 (mm/year)2

for seNorge2 against 25435946.8 (mm/year)2 for seNorge1.1. As a consequence, seNorge2 provides

less accurate but more precise estimates of the annual averaged precipitation than seNorge1.1.

Figures 7-8 show the ratio between accumulated precipitation and stream flow over the period

from 1 January 2000 to 31 December 2013 for both seNorge versions. This ratio displays clear spa-470

tial patterns for both precipitation products (Figure 7). For seNorge1.1, the ratio is typically above

1.2 in the southern parts of Norway, and especially high in the south eastern part. Further north, the

ratio varies within the range from 0.8 to 1.6. The ratio between precipitation and runoff is particu-

larly high for catchments with an average runoff below approximately 1500 mm/year (Figure 8). For

seNorge2, most catchments display a ratio between precipitation and runoff below 1.2 (Figure 7).475

Only in the south eastern corner of Norway, the interpolated precipitation values exceed the accumu-
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lated runoff amounts. The ratio between precipitation and runoff decreases with increasing average

yearly runoff (Figure 8). The spatial patterns in the ratio between precipitation and runoff indicate

systematic errors for both precipitation products. For some regions, the large mismatch between the

two variables cannot be attributed to the effect of evapotranspiration alone. The uncertainty in the480

runoff measurements should be taken into account and it could partly explain the very low or high ra-

tios found in some areas. In particular, in the norther parts of Norway the uncertainty in the observed

runoff is significant in the rivers during winter because of the ice formation.

Figures 9-10 shows the correlation coefficient between annual total precipitation and runoff for

catchments on the Norwegian mainland. For computing the annual accumulation, we use the so-485

called hydrological year starting from the 1st of September. At this point in time during the year,

most areas are snow-free and we assume that inter-annual variations in the total water storage in the

catchments are small. For both precipitation products, the correlation coefficient shows rather high

values in most parts of Norway ( Figure 9). An exception is Finnmark, which is the northernmost

region, where we have obtained lower values for the correlation coefficients than in most other490

regions. Finnmark is an area characterized by lower density of precipitation gauges than other parts

of the country ( Figure 1). Thus, the precipitation estimates from conventional datasets are affected

by a higher degree of uncertainty for this region, if compared with the other areas of our spatial

domain. For mid and southern parts of Norway, the seNorge1.1 precipitation displays slightly higher

correlation coefficient than the seNorge2 product. This may indicate that the earlier version captures495

the inter-annual variations of precipitation better than the latest precipitation product. Figure 10

shows that the correlation coefficient is generally lower for catchments with average runoff below

approximately 2000 mm/year than for watersheds with runoff above this threshold (Figure 10). Note

that for catchments with low runoff, the relationship between precipitation and discharge is more

influenced by evapotranspiration than for watersheds with high runoff.500

3.3 Indirect evaluation through the seNorge snow model

Daily updated maps of snow conditions have been produced for Norway since 2004 by using the

seNorge snow model (www.seNorge.no; Tveito et al., 2002; Engeset et al., 2004; Engeset et al.;

Saloranta, 2012, 2014a, b, 2016) and the seNorge conventional climatological datasets as model

forcing data. The simulated snow maps are used among others by the avalanche and flood forecasting505

services, hydropower energy situation analysis, as well as the general public. The seNorge snow

model consists of two main submodels, namely 1) the SWE submodel for snow pack water balance

and 2) the snow compaction and density submodel for converting SWE to snow depth. The equations

and default parameters of the seNorge snow model (v.1.1.1) are presented in Saloranta (2016).

Briefly described, the SWE submodel (v.1.1.1) uses a threshold air temperature to separate be-510

tween snow and rain precipitation, handles separately the ice and liquid water fractions of the total

SWE and keeps track of the accumulation and melting of snow. The snowpack can retain liquid water
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from snow melt and rain up to a fraction of its ice content, while the excess goes to runoff. The liquid

water in snow pack can also be refrozen to ice. The daily snow melt rate is a function of air temper-

ature and solar radiation. The two melt model parameters are estimated using the extensive melt rate515

data from Norwegian snow pillows (Saloranta, 2014a). Moreover, the average grid cell snow melt

rates are also affected by the simulated fraction of snow-covered area (SCA) in the model grid cells.

The SCA algorithm assumes that snow is distributed as the uniform distribution U (min,max) within

the grid cells, i.e. that all SWE values between a defined minimum and maximum value are equally

likely within the snow-covered part of the grid cell (Saloranta, 2014a, 2016).520

In the evaluation, the seNorge snow model is run with the temperature and precipitation from the

seNorge1.1 and seNorge2 conventional climatological datasets as forcing in the period 2001-2015,

and the simulated SCA values in each of the approximately 320000 simulated grid cells are com-

pared to the corresponding observed SCA values based on MODIS (moderate resolution imaging

spectroradiometer; http://modis.gsfc.nasa.gov/) satellite images. No specific model calibration has525

been done prior to this evaluation.

The set of MODIS satellite images, selected on the basis of manual pre-viewing for this study, con-

sist of 1123 images in the period 2001-2015. For each MODIS satellite scene, each pixel (500x500meters)

is assigned a SCA value between 0-100% coverage using a method based on the Norwegian linear

reflectance to snow cover algorithm (NLR) (Solberg et al., 2006). The input to the NLR algorithm530

is the normalized difference snow index signal (NDSI- signal) (Salomonson and Appel, 2004). An

area-weighted mean of the nine MODIS grid cells overlapping with a 1x1Km seNorge grid cell is

calculated to produce a SCA-value for comparison with the snow model. Moreover, those MODIS

grid cells, where 1) the slope is steeper than 22 degrees (corresponding to a 200m elevation change

per 500m horizontal distance), or where 2) the elevation difference between MODIS and seNorge535

grid cells is exceeding±100m, or where 3) at least one of the eight surrounding MODIS grid cells is

located on seawater, are not used in calculating the weighted mean. The MODIS grid cells may also

be classified as cloud-covered and thus give no information on SCA. If the included MODIS grid

cells with SCA values cover less than 25% of the seNorge grid area, no weighted mean SCA value

is calculated for the particular seNorge grid cell. This occurs in 7% of the seNorge grid cells due to540

the three topographical constraints alone, as listed above.

In the evaluation, for each day when a satellite image is available, each seNorge grid cell is clas-

sified into three categories: model under- or overestimation, or good match. A good match is here

defined as when the difference in the simulated and observed SCA is not exceeding ±50%-points.

These three categories are also assigned a score of −1, 0 and +1, respectively. This type of classifi-545

cation is applied in order to make the analysis more robust to systematic errors that can be present in

the observed satellite-based SCA e.g., due to the effect of forest canopy over the snow-covered area.

In order to make regional summaries of the evaluation results, Norway is divided into eastern,

western and northern regions and the fraction of the region’s grid cells where the model simulations
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Table 1. 90% percentile values of the model under- (Fu) and overestimation (Fo) (in % of grid cells) in the

three regions and for the two version of the conventional climate dataset.

90% percentile Fu, Fo Eastern Western Northern

seNorge1.1 7%, 13% 7%, 12% 5%, 6%

seNorge2 8%, 4% 7%, 5% 18%, 3%

seNorge2(*) 8%, 5% 7%, 5% 18%, 2%

(*) based only on data from the Norwegian climate database, without using

ECA&D data outside Norway.

significantly under- (Fu) and overestimate (Fo) in comparison to the observed SCA (i.e., a deviation550

exceeding ±0.5), are calculated for each day a satellite image is available.

As the maximum deviation between observed and simulated SCA may occur at different times

in different elevations and regions, a monthly mean of the model fit category scores (−1, 0,+1) is

calculated for each seNorge grid cell and month (if at least 15 score-values are available for the

particular grid cell and month). Then, a bias index B is defined for each grid cell by summing up the555

minimum and the maximum values (i.e. the largest under- and overestimations) of the monthly mean

scores (if at least three monthly means are available). This index B should reflect the systematic bias

(if any) in simulated SCA in the particular grid cell encountered during the period from March to

July.

The regional model under- and overestimation (Fu , Fo) of the SCA, based on totally 369, 318 and560

265 images in eastern, western and northern Norway, respectively, are shown in Figure 11. The 90%

percentile values of Fu and Fo are shown in Table 1. These results show that the snow model run

with seNorge1.1 data forcing clearly overestimates the SCA in the main melting season (May-June)

in eastern and western Norway (Figure 11). When the snow model is run with the seNorge2 data

forcing, the average Fu and Fo are roughly within a 5% deviation level for the whole analysis period565

from March to July in eastern and western Norway (Figure 11). For seNorge2, no significant overes-

timation is detected, but there is a slight tendency to more under- than overestimation, which can be

attributed to the use of precipitation observations, which have not yet been adjusted for the gauge-

catch error. In the northern Norway, however, the results show a different pattern, where the snow

model run with seNorge1.1 data forcing performs rather well, while the model application based on570

seNorge2 data forcing significantly underestimates the SCA in May-June (Figure 11; Table 1).

The maps of the bias index B (Figure 12) reveal the patterns of SCA overestimation in eastern

and western Norway when using seNorge1.1 data, and of SCA underestimation in northern Norway

when using seNorge2 data. The index B shows a positive correlation with elevation when using the

seNorge1.1 dataset (correlation coefficient of 0.56, 0.37 and 0.19 for eastern, western and northern575

regions, respectively), while for the seNorge2 dataset correlation of B with elevation is near zero for

the eastern and western regions, and negative (−0.25) for the northern region.
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3.4 Indirect evaluation through the DDD model

The rainfall-runoff model DDD (Distance Distribution Dynamics) (Skaugen and Onof, 2014; Skau-

gen and Mengistu, 2016) has been calibrated using the seNorge2 meteorological grid for 136 Nor-580

wegian catchments located all over Norway (see Figure 14 for the geographical distribution of

catchments). Input to the DDD model is only precipitation and temperature and the model is semi-

distributed in that the moisture-accounting (rainfall and snow melt) is performed for 10 elevation

zones of equal area. DDD has a 2-dimensional representation of the subsurface reservoir allowing

for spatial variability of groundwater levels as a function of distance from the river-network. Simi-585

lar to the seNorge snow model, snow melt is estimated using a calibrated temperature index model

(without the additional radiation term) and a calibrated threshold temperature separating solid and

liquid precipitation. The runoff dynamics of the DDD are characterized by a parsimonious parame-

ter regime where the parameters are individually estimated from Geographical Information Systems

(GIS) or from observed runoff records (recession analysis) and not collectively against observed590

runoff. Estimating the parameters in such a way reduces the tendency of model parameters when

calibrated as a set, to collectively compensate for errors in input data and model structure, and

hence acquire unrealistic values. DDD is calibrated optimizing the Kling-Gupta Efficiency (KGE)

skill-score (Kling et al., 2012) where the parameters are optimized so that correlation is maximized,

variability is reproduced and bias is minimized.595

The model parameters for the 136 catchments have been calibrated for the period 1 September

2000 to 31 December 2014 and validated for the period 1 September 1985 to 31 August 2000.

The mean KGE for the 136 catchments is 0.87, and the mean bias is 0.1%, indicating that the

volume of observed and simulate runoff was practically the same. Crucial for obtaining such a low

bias was the ability in DDD to adjust the amount of precipitation obtained from the meteorological600

grids. The adjustment is made through a correction factor that linearly increases/decreases the pre-

cipitation in the course of the calibration. DDD has the ability to use different correction factors for

precipitation as liquid (rain Pcorr) or solid (snow Scorr).

The correction factor Scorr should be higher than Pcorr due to the expected greater under-catch for

snow compared to liquid precipitation. However, for a calibrated parameter set, this is not always the605

case. For this study, the calibrated correction factors for precipitation and snow are meant to evaluate

the seNorge2 dataset.

Figure 13 shows the statistics of simulated precipitation P (precipitation multiplied by the correc-

tion factor), actual evapotranspiration (AE) and the ratio between simulated AE and P . In general,

the water balance seems reasonable, although the simulated AE shows lower values if compared610

with the ones reported in section 3.2 and it displays a rather high variability. Values of AE lower

than the expected ones indicate that the correction factors are also too low, since the runoff volumes

have reasonable values. So, with the understanding of a possible underestimation of AE, we inter-
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pret the calibrated corrections as indicators of under/overestimation of precipitation in the seNorge2

meteorological grid.615

Figures 14-15 show the calibrated Pcorr and Scorr values plotted according to the centroid of the

catchment they represent. Furthermore, in the two Figures the histograms of the calibrated Pcorr and

Scorr values are plotted. We see that the mean value for Pcorr is well beyond 1.0. The geographical

distribution of Pcorr reveals that seNorge2 underestimates liquid precipitation on the west coast along

the country and in the mountains. For solid precipitation Figure 15 shows that Scorr is more evenly620

distributed around the mean value which is close to 1.0. The geographical distribution of Scorr is quite

similar to that of Pcorr although the underestimation of precipitation as snow is quite pronounced in

the northern Norway.

3.5 Discussion on the evaluation of daily precipitation

The direct evaluation of the seNorge2 products shows that: the station network is, on average, too625

sparse to detect all small scale precipitation events, such as isolated thunderstorms, occurring within

our domain; from cross-validation, the bias of the analysis at grid points is significant only for intense

precipitation, which is underestimated, and the uncertainty is bounded between ±20%, or ±30%,

of the analysis value; by considering average statistics on precipitation events, and not on individual

observations, the average of the relative error varies between 0.9 and 1.15 over Norway, with the630

lower values in northern Norway and in a small area in the south of the domain.

The comparison of seNorge2 with the measurements of the long-term water balance shows that:

seNorge2 tends to underestimate precipitation and, if compared to the previous seNorge version

based on triangulation, it provides less accurate but more precise estimates of the annual averaged

precipitation, moreover the inter-annual variations of precipitation in some areas with a data-sparse635

network are better represented in the previous version.

The indirect evaluations of seNorge2 by considering the performances of the seNorge snow model

and of the DD model show that: for snow, a significant underestimation has been detected in northern

Norway, while for the rest of the country the estimates are in reasonable agreement with the obser-

vations; for liquid precipitation, underestimation occurs along the west coast of Norway and in the640

mountains. seNorge2, as a whole dataset, is an improvement of seNorge1.1 for e.g. snow mapping

application in southern Norway, where the model can take advantage of both the improved tempera-

ture and precipitation datasets, as shown in section 3.3. The seNorge snow model is likely to be more

sensitive to air temperature then the DDD rainfall-runoff model, thus taking advantage of both the

improved precipitation and temperature fields in seNorge2 for southern Norway. It is worth noting645

that in the indirect model evaluations, the deviations between the simulated and observed SCA or

discharge can also arise due to the model parameter uncertainty as well as due to the uncertainty in

how well the model code, algorithms, and the applied daily time step represent the real hydrological

processes in nature.
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As stated in the Introduction, seNorge2 is a modular project and some of its modules still need to650

be implemented. In the following, from the lessons learned from evaluation, possible future devel-

opments are discussed. There are three main points that must be considered. First, we have decided

to use the measured precipitation data without any adjustment for wind-induced gauge undercatch.

In principle, such an adjustment would introduce an additional source of uncertainty in the represen-

tation of the spatial structure of the precipitation fields by means of point measurements. However,655

as shown by the indirect evaluation, the amount of actual precipitation which is not observed by the

gauges can become a significant portion of the total precipitation and it might impact on the spatial

structure of the field, especially for solid precipitation (Førland and Tveito, 1997; Wolff et al., 2015).

Second, the impact of station density on the quality of the precipitation fields (e.g. intensity and in-

termittency) should be better investigated. For statistical interpolation methods, the density of the660

station network is the main control on spatial patterns of the interpolation skill (Hofstra et al., 2008).

Besides, variations in the station density impact differently on the percentiles of the distribution of

analyzed values and, on average, higher percentiles are smoothed out by sparse station networks

(Hofstra et al., 2010). Eventually, a post-processing procedure could be used for those areas charac-

terized by a rather sparse network of observations. As for the third point, a statistical model of the665

relationship between precipitation and topography should be introduced in our interpolation scheme.

In Masson and Frei (2014), the use of interpolation methods with multi-scale topographic predictors

has been investigated and their results show that a statistical method (kriging with external drift in

their case, which is similar to OI) with a realistic description of the spatial covariance function (i.e.

the S and B matrices defined in section 2.1, then ultimately the ρ function in Eq. (3)) and the use of670

a single topographic predictor yield accurate precipitation gridded datasets. In particular, a climato-

logical field, which incorporates the effect of topography on precipitation, used as the background

in the statistical interpolation of daily precipitation provided the better results in complex terrain.

4 Conclusions

The seNorge version 2.0 (seNorge2) gridded dataset for daily mean temperature and daily total675

precipitation on Norway is described in this paper. The dataset is based on in situ observations only

and it is continuously updated, at least once a day, while the archive goes back in time to 1957. The

main objective of the dataset is to support climate and hydrology applications and it is presented on

a high-resolution grid having 1 Km of grid spacing in both zonal and meridional directions.

The spatial interpolation schemes for both temperature and precipitation rely on statistical (Bayesian)680

methods, where the final predicted field is regarded as being determined by the integrated effects of

atmospheric motions at different spatial scales. For daily mean temperature, the scale-separation

approach developed combines a background field representing a larger-scale temperature field with

the information on small-scale processes as observed locally by the in situ observations. The spa-
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tial interpolation of daily total precipitation is based on a combination of two classical interpolation685

schemes, namely Optimal Interpolation and successive-correction methods. An original multi-scale-

separation approach has been implemented by means of a statistical interpolation scheme where the

information is passed through a cascade of (decreasing) spatial scales, which potentially could cover

scales from the synoptic motions down to the lower boundary of the mesoscale.

The evaluation of seNorge2 is based on systematic leave-one-out cross-validations. The tempera-690

ture fields are unbiased estimates of the actual temperature for most part of the temperature range,

only for extremely low temperatures a warm bias of around 1◦C is present. The precision of the

temperature field varies between 0.8◦C and 2.4◦C for daily average temperature. The quality of

the precipitation fields varies across the domain and with the precipitation intensity. Intense precip-

itation is more likely to be underestimated than weak precipitation. On average, the uncertainty of695

the predicted precipitation values at a grid point is approximately ±20% or ±30%, depending on

precipitation intensity.

In this article, we have focused on the evaluation of precipitation and the gridded fields have

been compared with hydrological measurements to assess their consistency with the observed wa-

ter balance. The previous seNorge version has also been used as a reference in the evaluation. By700

evaluating the output of snow and hydrological models that make use of seNorge2 as meteorolog-

ical input, the quality of the seNorge2 products (both temperature and precipitation) has also been

evaluated indirectly. Both models provide realistic outcomes and seNorge2 constitutes a valuable

resource for hydrology. At the same time, our evaluation points out that seNorge2 underestimates

precipitation, especially liquid precipitation and in data-sparse areas, such as northern Norway and705

the mountainous region in Southern Norway.

The seNorge project at MET Norway has the objective of maintaining and improving the conven-

tional climate datasets of daily temperature and precipitation. The seNorge2 dataset (release 17.08)

is publically available via http://doi.org/10.5281/zenodo.845733. Users can also access fresher, more

recent data for daily temperature at http://thredds.met.no/thredds/catalog/metusers/senorge2/seNorge2/710

provisional_archive/TEMP1d/gridded_dataset/catalog.html and for precipitation at http://thredds.

met.no/thredds/catalog/metusers/senorge2/seNorge2/provisional_archive/TEMP1d/gridded_dataset/

catalog.html. Furthermore, the data are shown on the web-portals senorge.no and xgeo.no (both in

Norwegian only).
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Figure 1. distribution of observation and percentage of data availability in the period 1971-2010. Top Panel:

Daily averaged temperature. Bottom panel: daily total precipitation amount. The dots mark station locations and

the color indicates the percentage of data available in the period: white < 20%; yellow < 40%; green < 60%;

blue < 80%; black ≥ 80%
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Figure 2. Examples of seNorge2 gridded fields. Top panel: Daily averaged temperature, 11 January 1987.

Bottom panel: daily total precipitation amount, 24 November 2014.
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Figure 3. distribution of the relative error rel for daily precipitation (Eq. (10)) as a function of the precipitation

intensity class. The distribution is represented by means of box-plots and each intensity class includes observa-

tions greater or equal to the value of its label. Time interval considered: 11 years, from 1 September 2003 to 31

August 2014.
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Figure 4. Daily precipitation. Spatial distribution for the mean value of rele1.0mm (Eq. (11)). Time interval

considered: 11 years, from 1 September 2003 to 31 August 2014.
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Figure 5. Sizes of Norwegian catchments without artificial influence and glaciers (area in Km2). The box on

the upper left corner shows the distributions of runoff for different catchment sizes.
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Figure 6. Average yearly precipitation (inputs of water to the catchment) against the sum of average yearly

runoff and actual evapotranspiration (losses of water from the catchment) for the period from 1 January 2000

to 31 December 2013 for: seNorge1.1 (blue); seNorge2 (red). The upper left box shows the distribution of

regression residuals when the sum of runoff and actual evapotranspiration exceeds 2000mm/year.
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Figure 7. Ratio between total accumulated precipitation and runoff for the period from 1 January 2000 to 31

December 2013 for the two different seNorge versions.
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Figure 8. Ratio between total accumulated precipitation and runoff as a function of runoff. The original data is

the same displayed in Figure 7. Each runoff value on the abscissa is a "label" of a class of runoff values centered

around that value (±300mm/year). The thick line is the median of the distribution; the shaded area shows the

interquartile range (i.e. difference between the third and the first quartile of the distribution of values). The

number of catchments for each runoff class is the same as reported in the in-box of Figure 10.
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Figure 9. Correlation coefficient between yearly total precipitation and runoff for the period stretching from 1

January 2000 to 31 December 2013 for the two different seNorge versions.
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Figure 10. Correlation coefficient between yearly total precipitation and runoff as a function of runoff. The

original data is the same displayed in Figure 9 and the format is the same as Figure 8. The in-box shows the

number of catchments for each runoff threshold.

35

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-64

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 28 August 2017
c© Author(s) 2017. CC BY 4.0 License.



Figure 11. The model under- (Fu, red circles) and overestimation (Fo, blue circles) areas of SCA (% of all

grid cells) in the three regions (Fig. 12) and for the two grid data versions (v.1.1. on the left column and v.2 on

the right column) in 2001-2015 (in the days when a MODIS satellite image is available for comparison). The

solid lines denote GAM-curves (with standard error) fitted to the cloud of points. The horizontal dashed lines

denote the 5% deviation level within which the model results are considered as “good” in NVEs operational

snow mapping (Saloranta, 2016).
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Figure 12. The bias index B for SCA in the seNorge grid cells for the two gridded dataset versions (v.1.1. on

the top panel and v.2 on the bottom panel) in March-July 2001-2015. in the top panel, the three regions used in

Figure. 11 are shown.
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Figure 13. Boxplot of simulated precipitation (P ) for 136 catchments (precipitation from seNorge 2.0 multi-

plied with Pcorr) (top), simulated actual evapotranspiration (AE) (middle) and ratio between AE and P (bot-

tom). Mean values are cited in the figures.
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Figure 14. Geographical distribution of Pcorr. The in-box shows the histograms with the distribution of Pcorr

values, the mean value is reported.
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Figure 15. Geographical distribution of Scorr. The in-box shows the histograms with the distribution of Scorr

values, the mean value is reported.
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